1,470 research outputs found

    Broadband coated lens solutions for FIR-mm-wave instruments

    Get PDF
    This paper presents recent results of ongoing European Space Agency funded program of work aimed at developing large dielectric lenses suitable for future satellite missions, with a particular focus on requirements for CMB polarimetry. Two lens solutions are being investigated: (i) polymer lenses with broadband multi-layer antireflection coatings; (ii) silicon lenses with surface-structured anti-reflection coating represented by directly machined pyramidal features. For each solution, base materials with and without coatings have been optically characterized over a range of temperatures down to ∼10 K. Full lens solutions are under manufacture and will be tested in a bespoke large cryo-optical facility

    Intervention planning and modification of the BUMP intervention: a digital intervention for the early detection of raised blood pressure in pregnancy

    Get PDF
    Background: Hypertensive disorders in pregnancy, particularly pre-eclampsia, pose a substantial health risk for both maternal and foetal outcomes. The BUMP (Blood Pressure Self-Monitoring in Pregnancy) interventions are being tested in a trial. They aim to facilitate the early detection of raised blood pressure through self-monitoring. This article outlines how the self-monitoring interventions in the BUMP trial were developed and modified using the person-based approach to promote engagement and adherence. Methods: Key behavioural challenges associated with blood pressure self-monitoring in pregnancy were identified through synthesising qualitative pilot data and existing evidence, which informed guiding principles for the development process. Social cognitive theory was identified as an appropriate theoretical framework. A testable logic model was developed to illustrate the hypothesised processes of change associated with the intervention. Iterative qualitative feedback from women and staff informed modifications to the participant materials. Results: The evidence synthesis suggested women face challenges integrating self-monitoring into their lives and that adherence is challenging at certain time points in pregnancy (for example, starting maternity leave). Intervention modification included strategies to address adherence but also focussed on modifying outcome expectancies, by providing messages explaining pre-eclampsia and outlining the potential benefits of self-monitoring. Conclusions: With an in-depth understanding of the target population, several methods and approaches to plan and develop interventions specifically relevant to pregnant women were successfully integrated, to address barriers to behaviour change while ensuring they are easy to engage with, persuasive and acceptable

    Breast compression – An exploration of problem solving and decision-making in mammography

    Get PDF
    Objective: Breast compression decreases radiation dose and reduces potential for motion and geometric unsharpness, yet there is variability in applied compression force within and between some centres. This article explores the problem solving process applied to the application of breast compression force from the mammography practitioners' perspective. Methods: A qualitative analysis was undertaken using an existing full data set of transcribed qualitative data collected in a phenomenological study of mammography practitioner values, behaviours and beliefs. The data emerged from focus groups conducted at six NHS breast screening centres in England (participant n = 41), and semi-structured interviews with mammography educators (n = 6). A researcher followed a thematic content analysis process to extract data related to mammography compression problem solving, developing a series of categories, themes and sub-themes. Emerging themes were then peer-validated by two other researchers, and developed into a model of practice. Results: Seven consecutive stages contributed towards compression force problem solving: assessing the request; first impressions; explanations and consent; handling the breast and positioning; applying compression force; final adjustments; feedback. The model captures information gathering, problem framing, problem solving and decision making which inform an ‘ideal’ compression scenario. Behavioural problem solving, heuristics and intuitive decision making are reflected within this model. Conclusion: The application of compression should no longer be considered as one single task within mammography, but is now recognised as a seven stage problem solving continuum. This continuum model is the first to be applied to mammography, and is adaptable and transferable to other radiography practice settings

    Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci

    Get PDF
    The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the acrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed

    Weather effects on the patterns of people's everyday activities: a study using GPS traces of mobile phone users

    Get PDF
    This study explores the effects that the weather has on people's everyday activity patterns. Temperature, rainfall, and wind speed were used as weather parameters. People's daily activity patterns were inferred, such as place visited, the time this took place, the duration of the visit, based on the GPS location traces of their mobile phones overlaid upon Yellow Pages information. Our analysis of 31,855 mobile phone users allowed us to infer that people were more likely to stay longer at eateries or food outlets, and (to a lesser degree) at retail or shopping areas when the weather is very cold or when conditions are calm (non-windy). When compared to people's regular activity patterns, certain weather conditions affected people's movements and activities noticeably at different times of the day. On cold days, people's activities were found to be more diverse especially after 10AM, showing greatest variations between 2PM and 6PM. A similar trend is observed between 10AM and midnight on rainy days, with people's activities found to be most diverse on days with heaviest rainfalls or on days when the wind speed was stronger than 4 km/h, especially between 10AM–1AM. Finally, we observed that different geographical areas of a large metropolis were impacted differently by the weather. Using data of urban infrastructure to characterize areas, we found strong correlations between weather conditions upon people's accessibility to trains. This study sheds new light on the influence of weather conditions on human behavior, in particular the choice of daily activities and how mobile phone data can be used to investigate the influence of environmental factors on urban dynamics

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach

    Get PDF
    Background: In this study, we quantified age-related changes in the time-course of face processing by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our approach does not rely on peak measurements and can provide a more sensitive measure of processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded discrimination task between two faces. The phase spectrum of these faces was manipulated parametrically to create pictures that ranged between pure noise (0% phase information) and the undistorted signal (100% phase information), with five intermediate steps. Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was higher, in younger than older observers. ERPs from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The earliest age-related ERP differences occurred in the time window of the N170. Older observers had a significantly stronger N170 in response to noise, but this age difference decreased with increasing phase information. Overall, manipulating image phase information had a greater effect on ERPs from younger observers, which was quantified using a hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower processing in older observers starting around 120 ms after stimulus onset. This age-related delay increased over time to reach a maximum around 190 ms, at which latency younger observers had around 50 ms time lead over older observers. Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual system sensitivity to image structure, the current study demonstrates that older observers accumulate face information more slowly than younger subjects. Additionally, the N170 appears to be less face-sensitive in older observers

    Using structural equation modeling to detect response shift in performance and health-related quality of life scores of multiple sclerosis patients

    Get PDF
    To illustrate how structural equation modeling (SEM) can be used for response shift detection with random measurement occasions and health state operationalized as fixed group membership (Study 1) or with fixed measurement occasions and health state operationalized as time-varying covariates (Study 2). In Study 1, we explored seven items of the Performance Scales measuring physical and mental aspects of perceived disability of 771 stable, 629 progressive, and 1,552 relapsing MS patients. Time lags between the three measurements varied and were accounted for by introducing time since diagnosis as an exogenous variable. In Study 2, we considered the SF-12 scales measuring physical and mental components of HRQoL of 1,767 patients. Health state was accounted for by exogenous variables relapse (yes/no) and symptoms (worse/same/better). In Study 1, progressive and relapsing patients reported greater disability than stable patients but little longitudinal change. Some response shift was found with stable and relapsing patients. In Study 2, relapse and symptoms were associated with HRQoL, but no change and only little response shift was found. While small response shifts were found, they had little impact on the evaluation of true change in performance and HRQo
    corecore